Eskalierende Werkzeuge mit Andrew Wiles

BLOG: Heidelberg Laureate Forum

Laureates of mathematics and computer science meet the next generation
Heidelberg Laureate Forum

Ich verstehe bei weitem nicht alles, was in den Vorträgen beim Heidelberg Laureate Forum erzählt wird, im Detail, und ich gehe davon aus, dass es den allermeisten Teilnehmern ähnlich geht. Aber auch Vorträge, die und deren Hintergründe man nicht im Detail versteht, können spannend und inspirierend sein, und der Vortrag von Andrew Wiles heute (Dienstag) beim Heidelberg Laureate Forum war dafür ein Paradebeispiel.

Romantisch, aber jetzt bitte zur Mathematik

Andrew Wiles at the 2016 HLF. Picture/Credit: Christian Flemming/HLF
Andrew Wiles at the 2016 HLF. Picture/Credit: Christian Flemming/HLF

Wiles ist durch seine Geschichte, festgehalten unter anderem in dem Bestseller von Simon Singh und einer zugehörigen BBC-Sendung, sicherlich mit der bekannteste Name unter den Laureaten beim diesjährigen HLF. Das Scheinwerferlicht, aus dem er seit rund 20 Jahren nie ganz herausgekommen sein dürfte, ist ihm sichtlich nicht ganz recht; zur Einleitung seines Vortrages sagt er denn auch gleich, die Sache mit dem Beweis für Fermats letzten Satz sei sicherlich auch eine romantische Geschichte, eine Geschichte mit einem großen Anfang und einem großen Ende, letzteres zumindest für ihn persönlich wie er gleich anfügt, aber jetzt wolle er etwas über die Mathematik dahinter erzählen.

Ich kenne nicht alle der Konzepte, auf denen die Geschichte, die dieser Ankündigung folgt, weiß etwa nur ganz ungefähr, was eine Galois-Gruppe ist, aber in groben Zügen kann ich der Darstellung von Wiles gut folgen. Vor allem werden die großen Bögen klar – die Entwicklung, die bei einem Problem beginnt, das man jedem Schüler und jeder Schülerin der Mittelstufe verständlich machen kann und dann Schritt für Schritt immer komplexer wird: die einfache Formel, elliptische Kurven, Modulformen, automorphe Darstellungen, Schlag auf Schlag.

Eskalation der Werkzeuge

Es ist, als stünde eine vermeintlich einfache Reparatur an, die man zunächst mit dem heimischen Werkzeugkasten angeht, beim Betrachten der Fortschritte merkt, dass es doch verschiedene professionelle Handwerker heranzuziehen gilt; deren Bemühungen eskalieren, bis man auf einmal das ganze Wohnzimmer voll komplizierter Maschinen stehen hat bevor in einem weiteren Eskalationsschritt das ganze Haus zur Behebung des Schadens in ein dafür zu errichtendes Fabrikgebäude eingebettet weren muss.

Wem dieses Bild überzeichnet und übertrieben vorkommt: Das ist stimmig. Denn dass ein so einfach formulierbares Problem in mehreren Eskalationsstufen letztlich so komplizierte mathematische Werkzeuge erfordert wie der Große Fermatsche Satz kann einem ebenfalls überzeichnet und übertrieben vorkommen.

Handelte es sich um eine Filmkomödie, könnte eine solche Eskalation nur in katastrophalem Versagen enden. In diesem Falle war es anders – dank des Fabrikgebäudes wurde das Problem auf ein etwas kleineres Problem zurückgeführt, das die Maschinen im Wohnzimmer wiederum auf ein für die professionellen Handwerker zumindest soweit reparierbares Problem reduzieren konnten, dass man selbst mit dem heimischen Schraubendreher noch die letzte Schraube anziehen konnte. Oder so ähnlich.

Diesen Eindruck des Zusammenspiels vieler auf den ersten Blick disparater Konzepte und Werkzeuge, und einer allgemeinen Eskalation bis hin zum letztlichen Beweis, hat Wiles Vortrag heute sehr schön vermittelt. Aber jetzt will ich mir doch noch einmal genauer anschauen, was ein Adele-Ring ist…

 

 

 

Markus Pössel hatte bereits während des Physikstudiums an der Universität Hamburg gemerkt: Die Herausforderung, physikalische Themen so aufzuarbeiten und darzustellen, dass sie auch für Nichtphysiker verständlich werden, war für ihn mindestens ebenso interessant wie die eigentliche Forschungsarbeit. Nach seiner Promotion am Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) in Potsdam blieb er dem Institut als "Outreach scientist" erhalten, war während des Einsteinjahres 2005 an verschiedenen Ausstellungsprojekten beteiligt und schuf das Webportal Einstein Online. Ende 2007 wechselte er für ein Jahr zum World Science Festival in New York. Seit Anfang 2009 ist er wissenschaftlicher Mitarbeiter am Max-Planck-Institut für Astronomie in Heidelberg, wo er das Haus der Astronomie leitet, ein Zentrum für astronomische Öffentlichkeits- und Bildungsarbeit. Pössel bloggt, ist Autor/Koautor mehrerer Bücher, und schreibt regelmäßig für die Zeitschrift Sterne und Weltraum.

5 comments

  1. Lieber Herr Pössel,
    bleiben Sie am Ball beim HLF2016, Ihre Erklärungen machen die Mathematik zur spannenden “Science Story”.
    Besten Gruss
    R. Ewald

  2. Nur zur Begrifflichkeit angemerkt:
    Eskalation meint das Steigen und Empor-Steigen, die Eskalation kann sich insofern als Treppe vorgestellt werden.
    Eskalation meint metaphorisch die Ausweitung derjenigen, die sich um eine Sache kümmern, es gibt insofern auch in einigem Bereich Konzepte wie 1st-, 2nd-, 3rd-Level Support, hier wird in der Regel eine Dreischichtigkeit gepflegt, wohl auch besonderer Sicht auf die Welt geschuldet, eine Vierschichtigkeit mag es auch geben, unter bestimmten Umständen und idR Philosophen (oder zumindest: begnadete Schwätzer) meinend.
    Es geht hier um Sozialbezüge.

    Oder abgesteift formuliert: Fermats letzter Satz ist nicht sonderlich relevant, im Beweis oder in der Widerlegung, nicht wirklich sozusagen zivilisationsbildend oder unterstützend, besondere (relevante) Erkenntnis ergibt so auch nicht.

    Statt mit ‘Eskalationsstufen’ zu arbeiten, wäre es womöglich cooler (“kühler”) formuliert, dass es oft sinnhaft ist Problematik zu segmentieren, auch mathematische.

    MFG
    Dr. Webbaer

    PS:
    Der Schreiber dieser Zeilen hat sogar ein Buch über Fermats letzte Vermutung gelesen.

    • …oder eben die Steigerung der Mittel, die in einer bestimmten Situation angewandt und aufgewendet werden. (Z.B. auch bei der Eskalation militärischer Konflikte.) Genau das ist hier der Fall; Wiles hat gut herausgearbeitet, wie bei seinem Beweis immer neue Arten von Konzepten zum Einsatz kamen. Aber gerade nicht als Segmentierung in Teilprobleme, sondern als Zurückführung jeder Problemstufe auf eine andersgelagerte Sorte von Problem.

      • @ Herr Dr. Pössel :

        In der Mathematik funktioniert die Segementierung von Problematik, das Divide et Impera womöglich nicht immer so, wie andernorts gewohnt, vielen Dank für die Ergänzung.
        Alles hängt sozusagen mit allem zusammen.

        MFG + weiterhin viel Erfolg,
        Dr. Webbaer

Leave a Reply


E-Mail-Benachrichtigung bei weiteren Kommentaren.
-- Auch möglich: Abo ohne Kommentar. +